Страница 1 из 1

Введение в анализ. О-символика

Добавлено: 15 дек 2020, 18:46
Adriana
Докажите, что при достаточно большом x>0 имеют место неравенства:
a) \( \ln^{1000} (x) < \sqrt (x) \)
b) \( x^{10} e^x < e^{2x} \)
Подскажите, как нужно действовать, думаю тут понадобится О-символика :unknown:

Re: Введение в анализ. О-символика

Добавлено: 16 дек 2020, 09:56
Алексей
Насчёт первого неравенства: можно доказать (по правилу Лопиталя, например), что \(\lim_{x\to+\infty}g(x)=+\infty\), где \(g(x)=\frac{x^\frac{1}{2000}}{\ln{x}}\). Отсюда получим, что и \(\lim_{x\to+\infty}g(x)^{1000}=+\infty\). Это значит, что каким бы ни было число \(\varepsilon\gt{0}\) отыщется такое \(\delta\gt{0}\), что для всех \(x\gt{\delta}\) будет выполнено неравенство \(\frac{\sqrt{x}}{\ln^{1000}x}\gt{\varepsilon}\).

Соответственно, приняв \(\varepsilon = 1\), мы и получим требуемое неравенство.

По второму - в принципе, аналогично, только я бы сократил обе части неравенства на \(e^x\).

Re: Введение в анализ. О-символика

Добавлено: 16 дек 2020, 13:41
Adriana
Не пойму, почему предел функции g(x) при х -> к + бесконечности равен + бесконечности, а не 0?...
И, честно говоря, не догоняю откуда это: \( \frac {\ln(x)}{ x^{1/2000}} \) ))

Re: Введение в анализ. О-символика

Добавлено: 16 дек 2020, 13:49
Алексей
Adriana писал(а): 16 дек 2020, 13:41 Не пойму, почему предел функции g(x) при х -> к + бесконечности равен + бесконечности, а не 0?...
Там была опечатка, я поправил.


Adriana писал(а): 16 дек 2020, 13:41 И, честно говоря, не догоняю откуда это: \( \frac {\ln(x)}{ x^{1/2000}} \) ))
Мы имеем право рассматривать любую функцию, какую захотим.

Re: Введение в анализ. О-символика

Добавлено: 16 дек 2020, 14:20
Adriana
Предел функции g(x) = \( \frac {x^{\frac{1}{2000}}} {\ln(x)} \) всё равно, по моим подсчётам, равен 0))
Но ладно, принцип решения я поняла, спасибо!

Re: Введение в анализ. О-символика

Добавлено: 16 дек 2020, 14:35
Алексей
Adriana писал(а): 16 дек 2020, 14:20 Предел функции g(x) = \( \frac {x^{\frac{1}{2000}}} {\ln(x)} \) всё равно, по моим подсчётам, равен 0))
Но ладно, принцип решения я поняла, спасибо!
Перепроверьте решение, там точно в пределе \(\infty\).